

The Liquid Argon Purity Demonstrator: Status

Benton Pahlka Fermilab

LAPD Motivation and Details

- Previous LAr systems required evacuation to achieve sufficient purity for time projection chambers
- Evacuation not practical for very large vessels
- LAPD goal is to determine if purity can be achieved without evacuation
- ◆ 30 ton liquid argon tank (5,875 gal): Cannot be evacuated
- ◆ 1st run was Winter 2011-2012
 - Achieved 3+ ms lifetime
 - Only filled 1/3 full due to commissioning caution
- ◆ 2nd run under way now (started late December)
 - Tank is "full"
 - Includes "Long Bo" TPC with 2 meter drift
 - Have again achieved and sustained 3+ ms lifetime
- Three phases of operation:
 - Argon purge
 - Gas Recirculation
 - Liquid Recirculation

The LAPD System

Gaseous Argon Purge Run II

100 T-312.F12

◆ Room temperature argon gas injected into tank bottom pushes less dense air out the top at 5 ft³/min

- 3.8 ft/hr argon piston rise rate
- 2.9 hours per volume change

Argon Purges: Run I and II

Gas Recirculation

- Gas is pumped thru the mole sieve and oxygen filters at a rate of a volume change every 3.4 hours
- Gas recirculation ran for 77 volume changes (about 1 week)
- H₂O outgases "forever": outgassing rate eventually matches filtration rate

4/1/13

Liquid Fill

- LAPD was filled with LAr from the D0 calorimeters in 4 trailer loads
- Contamination at the start of liquid recirculation
 - Liquid phase
 - \Rightarrow 30 ppb O_2
 - \diamond 8 PPM N₂
- Recirculation started at 2.42 vol change/day
- 1 millisecond electron lifetime achieved after 6.6 volume changes
- Stabilized at 5 ms after 60 volume changes
- Reduction of pumping speed did not reduce lifetime
- 6 weeks of successful pumped liquid purification demonstrated

- ◆ 30 ppb O₂ reduced to 1 ppb after three days
- Lifetime and impurities measured by purity monitors in tank (1 shown)
- igoplus Error bars are statistical (1 σ): each point is average over 3 readings

- Studied effect of variable pump flow rate
- Reduction in flow rate did not affect lifetime

- After pump turned off, dirty condensed LAr returns to tank unfiltered
- Impurities increase linearly
- Good fit to straight line ($\chi^2 = 50/30$ for what it's worth)

RTDs

Tracks in Long Bo

Summary

- LAPD successfully demonstrated > 5 ms lifetime in Run II
- ◆ LBNE requires 1.4 ms lifetime
- Three phase approach has aided understanding the system
- Successfully observed tracks in the Long Bo TPC

Future Work

- Data analysis of contaminants, purity monitors, other devices
- Filter capacity tests
- Injection of contaminants
- Contaminant modeling inside the tank

Thanks to People Involved

- Mark Adamowski
- Ben Carls
- Ron Davis
- Alan Hahn
- Hans Jostlein
- Walter Jaskierny
- Cary Kendziora
- Sarah Lockwitz
- Dan Markley
- Rob Plunkett
- Stephen Pordes
- Brian Rebel
- Rich Schmitt
- Eva Skupp
- Michelle Stancari
- ◆ Terry Tope
- Tingjun Yang

4/1/13

Argon Purge Run I Sniffers

- Two sets of capillary tubes ("oxygen sniffers") deployed at various depths in the tank during the purge measures concentration evolution
- Results shown for the argon purge for Run I

4/1/13

Gas Recirculation

Filter Regeneration

Copper based oxygen filter

- External heaters warm a mix of hydrogen and argon gas to 200 C
- Hydrogen combines with oxygen to create water
- ➤ Hydrogen in Argon at levels > 2.7% is considered flammable by commercial gas suppliers
- > Reaction is exothermic such that the filter self heats
- ➤ If 250 C is exceeded filter may sinter and Cu surface area and thus filter capacity is reduced
- For the 80 liter LAPD filter size 0.3% H2 in Ar created self heating at a rate of 10 C/hr
- >2.5% H2 in Ar led to runaway self heating
- > H2 should be slowly bled into the primary argon flow while filter temperature is monitored

LAPD Status: All Experimenters Meeting

Filter is evacuated while it cools

4/1/13

Both Argon Purges

The LAPD System

LAPD Motivation and Details

Liquid Fill

- Particulate filters to protect tank very important
- Upon entry into LAPD tank after Run 1 shocked by amount of particulate in tank
 - > Not a problem for electron lifetime but may be attracted to HV surfaces
- This was despite careful pipe cleaning
- Also recommend pressurizing and then blowing down piping to blast out particulate prior to closure of piping sections
- First Run 2 fill attempt revealed a Kimwipe left in the piping – must be vigilant
- Also 1st LAr trailer load plugged fill line particulate filter

Liquid Fill

- LAPD was filled with LAr from the D0 calorimeters in 4 trailer loads
- Important to verify supply LAr contamination prior to system introduction
 - > First 5,000 gallon LAr trailer supplied by commercial vendor for LAPD Run I was rejected
 - > D0 LAr contamination (very good)
 - \diamond < 200 ppb O₂
 - \diamond 8 PPM N₂
 - ♦ Unable to measure H₂O in liquid answer is always zero

4/1/13

Purge From Air

- How important is the purge?
- Due to the 841x mass difference between warm argon gas and liquid argon
 - 6 ppm O₂ vapor contamination adds 7 ppb O₂ to the equivalent liquid volume

- 18 ppm N₂ vapor contamination adds 21 ppb
- Unlike O₂/N₂, H₂O outgases "forever"
- Must purge out piping and other "dead" volumes attached to the tank that can't be evacuated

